Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Environ Int ; 186: 108631, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588609

RESUMEN

Methylmercury (MeHg) is a global environmental pollutant with neurotoxicity, which can easily crosses the blood-brain barrier and cause irreversible damage to the human central nervous system (CNS). CNS inflammation and autophagy are known to be involved in the pathology of neurodegenerative diseases. Meanwhile, MeHg has the potential to induce microglia-mediated neuroinflammation as well as autophagy. This study aims to further explore the exact molecular mechanism of MeHg neurotoxicity. We conducted in vitro studies using BV2 microglial cell from the central nervous system of mice. The role of inflammation and autophagy in the damage of BV2 cells induced by MeHg was determined by detecting cell viability, cell morphology and structure, reactive oxygen species (ROS), antioxidant function, inflammatory factors, autophagosomes, inflammation and autophagy-related proteins. We further investigated the relationship between the inflammatory response and autophagy induced by MeHg by inhibiting them separately. The results indicated that MeHg could invade cells, change cell structure, activate NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and autophagosome, release a large amount of inflammatory factors and trigger the inflammatory response and autophagy. It was also found that MeHg could disrupt the antioxidant function of cells. In addition, the inhibition of NLRP3 inflammasome alleviated both cellular inflammation and autophagy, while inhibition of autophagy increased cellular inflammation. Our current research suggests that MeHg might induce BV2 cytotoxicity through inflammatory response and autophagy, which may be mediated by the NLRP3 inflammasome activated by oxidative stress.


Asunto(s)
Autofagia , Inflamasomas , Inflamación , Compuestos de Metilmercurio , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Compuestos de Metilmercurio/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Autofagia/efectos de los fármacos , Ratones , Inflamasomas/metabolismo , Animales , Inflamación/inducido químicamente , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos
2.
Ecotoxicol Environ Saf ; 272: 116050, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325272

RESUMEN

Silica nanoparticles (SiNPs) are widely used in the biomedical field and can enter the central nervous system through the blood-brain barrier, causing damage to hippocampal neurons. However, the specific mechanism remains unclear. In this experiment, HT22 cells were selected as the experimental model in vitro, and the survival rate of cells under the action of SiNPs was detected by MTT method, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and adenosine triphosphate (ATP) were tested by the kit, the ultrastructure of the cells was observed by transmission electron microscope, membrane potential (MMP), calcium ion (Ca2+) and apoptosis rate were measured by flow cytometry, and the expressions of mitochondrial functional protein, mitochondrial dynein, mitochondrial autophagy protein as well as apoptosis related protein were detected by Western blot. The results showed that cell survival rate, SOD, CAT, GSH-Px, ATP and MMP gradually decreased with the increase of SiNPs concentration, while intracellular ROS, Ca2+, LDH and apoptosis rate increased with the increase of SiNPs concentration. In total cellular proteins,the expressions of mitochondrial functional proteins VDAC and UCP2 gradually increased, the expression of mitochondrial dynamic related protein DRP1 increased while the expressions of OPA1 and Mfn2 decreased. The expressions of mitophagy related proteins PINK1, Parkin and LC3Ⅱ/LC3Ⅰ increased and P62 gradually decreased, as well as the expressions of apoptosis related proteins Apaf-1, Cleaved-Caspase-3, Caspase-3, Caspase-9, Bax and Cyt-C. In mitochondrial proteins, the expressions of mitochondrial dynamic related proteins DRP1 and p-DRP1 were increased, while the expressions of OPA1 and Mfn2 were decreased. Expressions of mitochondrial autophagy associated proteins PINK1, Parkin, LC3II/LC3I increased, P62 decreased gradually, as well as the expressions of apoptosis related proteins Cleaved-Caspase-3, Caspase-3, and Caspase-9 increased, and Cyt-C expressions decreased. To further demonstrate the role of ROS and DRP1 in HT22 cell apoptosis induced by SiNPs, we selected the ROS inhibitor N-Acetylcysteine (NAC) and Dynamin-related protein 1 (DRP1) inhibitor Mdivi-1. The experimental results indicated that the above effects were remarkably improved after the use of inhibitors, further confirming that SiNPs induce the production of ROS in cells, activate DRP1, cause excessive mitochondrial division, induce mitophagy, destroy mitochondrial function and eventually lead to apoptosis.


Asunto(s)
Dinaminas , Mitofagia , Nanopartículas , Dióxido de Silicio , Adenosina Trifosfato , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Dinaminas/metabolismo , Nanopartículas/toxicidad , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/farmacología , Superóxido Dismutasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Ratones , Línea Celular Tumoral
3.
Environ Int ; 183: 108407, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38150806

RESUMEN

Halobenzoquinones (HBQs) were recently discovered as an emerging class of drinking water disinfection byproducts with carcinogenic concern. However, the molecular mechanism underlying HBQs-induced DNA damage is not clear. In this study, we integrated in vitro genotoxicity, computational toxicology, and the quantitative toxicogenomic analysis of HBQs on DNA damage/repair pathways in human bladder epithelial cells SV-HUC-1. The results showed that HBQs could induce cytotoxicity with the descending order as 2,6-DIBQ > 2,6-DCBQ ≈ 2,6-DBBQ. Also, HBQs can increase DNA damage in SV-HUC-1 cells and thus generate genotoxicity. However, there is no significant difference in genotoxicity among the three HBQs. The results of molecular docking and molecular dynamics simulation further confirmed that HBQs had high binding fractions and stability to DNA. Toxicogenomic analysis indicated that HBQs interfered with DNA repair pathways, mainly affecting base excision repair, nucleotide excision repair and homologous recombination repair. These results have provided new insights into the underlying molecular mechanisms of HBQs-induced DNA damage, and contributed to the understanding of the relationship between exposure to DBPs and risks of developing bladder cancer.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Desinfección/métodos , Toxicogenética , Simulación del Acoplamiento Molecular , Agua Potable/análisis , Daño del ADN , Desinfectantes/toxicidad , Contaminantes Químicos del Agua/análisis
4.
Artículo en Inglés | MEDLINE | ID: mdl-37922403

RESUMEN

A new technique of polarization doping was adopted to improve NO2 gas sensing properties of the polypyrrole (PPy) sensor. PPy nanosheets polarization doped with sodium dodecyl benzenesulfonate (SDBS) were synthesized by low-temperature polymerization. The semiagglomerated PPy nanosheets were well-dispersed and a large specific surface areas due to the introduction of dodecyl benzenesulfonate (DBS). The DBS doped PPy sensor shows excellent NO2 sensing performance. Polarization of sulfonate ions to PPy enhanced the adsorption ability of NO2 with the synergistic effect of NO2. The adsorption energy (-0.676 eV) and electron transfer (0.521 |e|) of PPy to NO2 increased greatly after doping. An unoccupied electron state is observed in the valence band electron structure of PPy/DBS after the adsorption of NO2 by calculations of Density Functional Theory (DFT). The intermolecular synergy between NO2 and PPy/DBS causes a strong polarization, resulting in a high polarization potential, which enhances the NO2 sensing performance of PPy sensor. It is of great significance to develop NO2 detection device based on PPy that works at room temperature.

5.
Virol Sin ; 38(5): 663-670, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660950

RESUMEN

Four species of porcine circoviruses (PCV1-4) have been reported to circulate in Chinese domestic pigs, while the epizootiology of these viruses in free-ranging wild boars in China remains unknown. In this study, tissue and serum samples collected from diseased or apparently healthy wild boars between 2018 and 2020 in 19 regions of China were tested for the prevalence of PCV1-4 infections. Positive rates of PCV1, PCV2, and PCV3 DNA in the tissue samples of Chinese wild boars were 1.6% (4/247), 58.3% (144/247), and 10.9% (27/247) respectively, with none positive for PCV4. Sequence analysis of viral genome showed that the four PCV1 strains distributed in Hunan and Inner Mongolia shared 97.5%-99.6% sequence identity with global distributed reference strains. Comparison of the ORF2 gene sequences showed that 80 PCV2 strains widely distributed in 18 regions shared 79.5%-100% sequence identity with reference strains from domestic pigs and wild boars, and were grouped into PCV2a (7), PCV2b (31) and PCV2d (42). For PCV3, 17 sequenced strains shared 97.2%-100% nucleotide identity at the genomic level and could be divided into PCV3a (3), PCV3b (2) and PCV3c (12) based on the phylogeny of ORF2 gene sequences. Serological data revealed antibody positive rates against PCV1 and PCV2 of 11.4% (19/167) and 53.9% (90/167) respectively. The data obtained in this study improved our understanding about the epidemiological situations of PCVs infection in free-ranging wild boars in China and will be valuable for the prevention and control of diseases caused by PCVs infection.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Porcinos , Animales , Sus scrofa/genética , Circovirus/genética , Genoma Viral , China/epidemiología , Infecciones por Circoviridae/epidemiología , Infecciones por Circoviridae/veterinaria , Filogenia
6.
Biosens Bioelectron ; 240: 115643, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37651949

RESUMEN

As an important emerging pollutant, antibiotic resistance genes (ARGs) monitoring is crucial to protect the ecological environment and public health, but its rapid and accurate detection is still a major challenge. In this study, a new single-labeled dual-signal output ratiometric electrochemical genosensor (E-DNA) was developed for the rapid and highly sensitive detection of ARGs using a synergistic signal amplification strategy of T3C2@Au nanoparticles (T3C2@AuNPs) and isothermal strand displacement polymerase reaction (ISDPR). Specially, two-dimensional monolayer T3C2 nanosheets loaded with uniformly gold nanoparticles were prepared and used as the sensing platform of the E-DNA sensor. Benefiting from excellent conductivity and large specific surface area of Ti3C2@AuNPs, the probe immobilization capacity of the E-DNA sensor is doubled, and electrochemical response signals of the E-DNA sensor were significantly improved. The proposed single-labeled dual-signal output ratiometric sensing strategy exhibits three to six times higher sensitivity for the sul2 gene than the single-signal sensing strategy, which significantly reduces cost meanwhile retaining the advantages of high sensitivity and reliability offered by conventional dual-labeled ratiometric sensors. Coupled with ISDPR amplification technology, the E-DNA sensor has a wider linear range from 10 fM to 10 nM and a limit of detection as low as 2.04 fM (S/N=3). More importantly, the E-DNA sensor demonstrates excellent specificity, good stability and reproducibility for target ARGs detection in real water samples. The proposed new sensing strategy provides a highly sensitive and versatile tool for the rapid and accurate quantitative analysis of various ARGs in environmental water samples.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Oro , Reproducibilidad de los Resultados , Titanio , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Agua
7.
ChemSusChem ; 16(24): e202300708, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37624682

RESUMEN

Interphases, especially the electrochemically formed solid electrolyte interphase (SEI), are significantly important for cycling stability, reaction kinetics and safety of rechargeable batteries. The structure and composition of the electric double layer (EDL) greatly affect the formation of the SEI and the performance of electrodes. However, as far as we know, there is no review discussing the theme specifically. Herein, the recent substantial progress for EDL and its impact on the formation of SEI in rechargeable batteries are reviewed and discussed. Firstly, the specific adsorption of electrolyte components on electrodes' surface and the ionic solvation structure are introduced. Furthermore, various methods for controlling EDL in different electrode systems are described. Finally, the potential future advancements of the SEI through the manipulation of EDL are discussed, aiming to enhance the electrochemical performance of rechargeable batteries.

8.
Mol Neurobiol ; 60(11): 6542-6555, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37458989

RESUMEN

Silica nanoparticles (SiNPs) have been widely used in industry, electronics, and pharmaceutical industries. In addition, it is also widely used in medicine, tumor treatment and diagnosis, as well as other biomedical and biotechnology fields. The opportunities for people to contact SiNPs through iatrogenic, occupational, and environmental exposures are gradually increasing. The damage and biological effects of SiNPs on the nervous system have attracted widespread attention in the field of toxicology. Central nerve cells are rich in mitochondria. It is suggested that the effects of SiNPs on mitochondrial damage of nerve cells may involve the maintenance of neuronal membrane potential, the synthesis and operation of neurotransmitters, and the transmission of nerve pulses, and so on. We established an experimental model of SH-SY5Y cells to detect the cell survival rate, apoptosis, changes of reactive oxygen species and mitochondrial membrane potential, and the expression of mitochondrial function-related enzymes and proteins, so as to reveal the possible mechanism of SiNPs on neuronal mitochondrial damage. It was found that SiNPs could cause oxidative damage to cells and mitochondria, destroy some normal functions of mitochondria, and induce apoptosis in SH-SY5Y cells. The voltage-dependent anion channel 1(VDAC1) protein inhibitor DIDS could effectively reduce intracellular oxidative stress, such as the reduction of ROS content, and could also usefully restore some functional proteins of mitochondria to normal levels. The inhibition of VDAC1 protein may play an important role in the oxidative damage and dysfunction of neuronal mitochondria induced by SiNPs.


Asunto(s)
Nanopartículas , Neuroblastoma , Humanos , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Línea Celular Tumoral , Dióxido de Silicio/toxicidad , Dióxido de Silicio/metabolismo , Neuroblastoma/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Apoptosis , Nanopartículas/toxicidad , Potencial de la Membrana Mitocondrial
9.
Environ Sci Pollut Res Int ; 30(30): 76204-76216, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37233931

RESUMEN

It is a "kill two birds with one stone" method to convert invasive plants into hydrochar via hydrothermal carbonization as well as coinciding with 3R rules (reduction, recycling, and reuse). In this work, a series of hydrochars (pristine, modified, and composite) derived from invasive plants Alternanthera philoxeroides (AP) were prepared and applied to the adsorption and co-adsorption of heavy metals (HMs) such as Pb(II), Cr(VI), Cu(II), Cd(II), Zn(II), and Ni(II). The results show that MIL-53(Fe)-NH2- magnetic hydrochar composite (M-HBAP) displayed a strong affinity for HMs, which the maximum adsorption capacities for HMs were 153.80 (Pb(II)), 144.77 (Cr(VI)), 80.58 (Cd(II)), 78.62 (Cu(II)), 50.39 (Zn(II)), and 52.83(Ni(II)) mg/g (c0 = 200 mg/L, t = 24 h, T = 25 ℃, pH = 5,2,6,4,6,5). This may be because the doping of MIL-53(Fe)-NH2 enhanced the surface hydrophilicity of hydrochar, which allows hydrochar to disperse in the water within 0.12 s and possessed excellent dispersibility compared with pristine hydrochar (BAP) and amine-functionalized magnetic modified hydrochar (HBAP). Furthermore, the BET surface area of BAP was improved from 5.63 to 64.10 m2/g after doing MIL-53(Fe)-NH2. M-HBAP shows a strong adsorption effect on the single HMs system (52-153 mg/g), while it decreased significantly (17-62 mg/g) in the mixed HMs system due to the competitive adsorption. Cr(VI) can produce strong electrostatic interaction with M-HBAP, Pb(II) can react with CaC2O4 on the surface of M-HBAP for chemical precipitation, and other HMs can react with functional groups on the surface of M-HBAP for complexation and ion exchange. In addition, five adsorption-desorption cycle experiments and vibrating sample magnetometry (VSM) curves also proved the feasibility of the M-HBAP application.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Cadmio , Cinética , Aminas , Plomo , Fenómenos Magnéticos , Contaminantes Químicos del Agua/análisis
10.
Toxicology ; 487: 153459, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36787874

RESUMEN

In recent years, 2,6-dichloro-1,4-benzoquinone (DCBQ) has become an emerging water disinfection by-product and widely distributed in disinfected water. Although kidney is a potential target of DCBQ, a systematic study of the in vivo nephrotoxicity of DCBQ is rare. In this study, a 28-day oral toxicity test was used to assess the nephrotoxic effects of DCBQ on mice. And the potential mechanisms of nephrotoxicity induced by DCBQ were explored through inflammation, oxidative stress, apoptosis and gut microbiota. The results showed that the kidney indexes of mice were not altered in DCBQ-exposed group in comparison with the control group. The histopathological investigation revealed that DCBQ caused swollen of renal tube, destruction of the renal structure, and infiltration of inflammatory cell in kidney. DCBQ has induced oxidative damage in kidney, as the observation of the increase of the renal superoxide dismutase (SOD) and catalase (CAT) activity. Also, DCBQ has triggered the inflammatory response in kidney through the increased expression of IL-1ß, NF-κB and iNOS. Moreover, DCBQ has activated the apoptosis pathway, as indicated by the increased mRNA expression of Caspase-3 and Caspase-9. We eventually found an association between gut microbiota and nephrotoxic variables, demonstrating the importance of gut-kidney axis in DCBQ toxicity. Our results suggested that exposure to DCBQ in disinfected water might be a risk factor for kidney and provided novel insights into the underlying mechanisms of DCBQ-induced kidney injury, contributing to better interpretation of the health impact of the environmentally emerging contaminant DCBQ.


Asunto(s)
Desinfección , Riñón , Animales , Ratones , Antioxidantes/farmacología , Apoptosis , Benzoquinonas/toxicidad , Benzoquinonas/química , Estrés Oxidativo , Pruebas de Toxicidad , Purificación del Agua
11.
Environ Toxicol ; 38(2): 289-299, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36416502

RESUMEN

There is no ideal therapy for testicular damage induced by Cr(VI); however, bone marrow mesenchymal stem cells (BMSCs) transplantation may be a promising therapy. A Cr(VI) solution was administered to rats by intraperitoneal injection for 30 days, then BMSCs from donor rats were transplanted. Two weeks later, decreased activity and appetite, along with other pathological changes, were improved in the BMSCs group. The location of BMSCs in damaged testes was observed via laser confocal microscopy. Chromium content in the Cr(VI) and BMSCs groups significantly increased compared with that in the control group, but there was no significant difference between the two groups, as revealed by atomic absorption spectrometry. The ferrous iron and the total iron content of testes in the BMSCs group were significantly lower than those in the Cr(VI) group, as observed by Lillie staining and a tissue iron assay kit. Western blotting and immunohistochemical analyses revealed that the expression of Beclin 1, LC3B, 4-hydroxynonenal, and transferrin receptor 1 was decreased in the BMSCs group, compared with the Cr(VI) group. The expression of glutathione peroxidase 4 (GPX4), SLC7A11, p-AKT, mammalian target of rapamycin (mTOR), and p-mTOR in the BMSCs group was higher than that in the Cr(VI) group. Taken together, we propose that BMSCs repair Cr(VI)-damaged testes by alleviating ferroptosis and downregulating autophagy-associated proteins through the upregulation of AKT and mTOR phosphorylation.


Asunto(s)
Células de la Médula Ósea , Ferroptosis , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Testículo , Animales , Ratas , Autofagia , Células de la Médula Ósea/metabolismo , Cromo/toxicidad , Hierro/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Testículo/efectos de los fármacos , Testículo/lesiones , Testículo/cirugía
12.
Chemosphere ; 309(Pt 1): 136763, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36209857

RESUMEN

Halobenzoquinones (HBQs) are an emerging class of drinking water disinfection byproducts that have been predicted as bladder carcinogens. However, data on the genotoxicity of HBQs are still scarce. This study performed a quantitative structure-toxicity relationship (QSTR) analysis of HBQ isomers on DNA reactivity and genotoxicity. The interaction of HBQs with calf thymus DNA (ct-DNA) was studied using multi-spectroscopic and molecular docking techniques. UV-Vis absorption spectra observed a significant hyperchromic effect with the increase of HBQ concentration. The fluorescence intensity of both probe-ct-DNA decreased with the increasing concentration of HBQs, indicating that the interaction mode between each HBQs and DNA was quite complicated, and there were both minor groove binding and intercalation binding. Molecular docking showed that HBQs interacted with DNA predominantly via hydrogen bond at guanine-rich areas in the minor groove of DNA. The genotoxicity of HBQs on human hepatocytes (L-02) was evaluated by micronucleus test, and the results showed that HBQs could cause significant chromosomal damage. The rank order of HBQ isomers on DNA reactivity and genotoxicity was 2,5-HBQs > their corresponding 2,6-HBQs. QSTR analysis found that dipole moment is the key structural descriptor influencing both DNA reactivity and genotoxicity of HBQ isomers. This study suggested that HBQs have caused genotoxicity which was influenced by their isomeric effects, warranting a comprehensive understanding of the genotoxic and carcinogenic risks associated with HBQs exposure.


Asunto(s)
Agua Potable , Humanos , Agua Potable/análisis , Simulación del Acoplamiento Molecular , Benzoquinonas/química , Daño del ADN , ADN , Carcinógenos/análisis , Guanina/análisis
13.
Biosensors (Basel) ; 12(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36005054

RESUMEN

Rapid and sensitive detection of cancer biomarkers is crucial for cancer screening, early detection, and improving patient survival rate. The present study proposes an electrochemical gene-sensor capable of detecting tumor related TP53 gene mutation hotspots by self-assembly of sulfhydryl ended hairpin DNA probes tagged with methylene blue (MB) onto a gold electrode. By performing a hybridization reaction with the target DNA sequence, the gene-sensor can rearrange the probe's structure, resulting in significant electrochemical signal differences by differential pulse voltammetry. When the DNA biosensor is hybridized with 1 µM target DNA, the peak current response signal can decrease more than 60%, displaying high sensitivity and specificity for the TP53 gene. The biosensor achieved rapid and sensitive detection of the TP53 gene with a detection limit of 10 nmol L-1, and showed good specific recognition ability for single nucleotide polymorphism (SNP) and base sequence mismatches in the TP53 gene affecting residue 248 of the P53 protein. Moreover, the biosensor demonstrated good reproducibility, repeatability, operational stability, and anti-interference ability for target DNA molecule in the complex system of 50% fetal bovine serum. The proposed biosensor provides a powerful tool for the sensitive and specific detection of TP53 gene mutation hotspot sequences and could be used in clinical samples for early diagnosis and detection of cancer.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Biomarcadores de Tumor , Técnicas Biosensibles/métodos , ADN , Genes p53 , Oro/química , Humanos , Mutación , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor/genética
14.
Environ Sci Pollut Res Int ; 29(51): 78092-78106, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35689769

RESUMEN

In this study, novel magnetic biochars derived from Alternanthera philoxeroides and modified by different amines (hexanediamine, melamine, and L-glutathione) were successfully prepared by hydrothermal carbonization and employed as an efficient adsorbent for Cr(VI). When pH = 2.0, T = 25 °C, c0 = 100 mg/L, and the dosage of biochars is 0.05 g, the maximum adsorption capacity of Cr(VI) by pristine biochar (BAP) was 42.47 mg/g and modified biochars (MFBAP, MEBAP, LBAP) was 80.58, 62.26, and 55.66 mg/g, respectively. It was found that hexanediamine and melamine could enhance the SBET of biochars, while L-glutathione could reduce its SBET, which could be supported by BET measurement and SEM images. Adsorption kinetics and isotherm studies showed that the Cr(VI) adsorption process of MFBAP followed Elovich kinetic model and Langmuir isotherm, respectively, which means that it was mainly a chemical adsorption process. The characterization results proved that -NH2 derived from amines plays a significant role in removing Cr(VI), which is mainly degraded by complexation reaction, electrostatic interaction, and reduction. In sum, the biochar modified by amines has excellent Cr(VI) adsorption performance, highly enhanced SBET, and excellent recyclability, which is a promising candidate for solving the problem of invasive plants and wastewater treatment.


Asunto(s)
Aminas , Contaminantes Químicos del Agua , Cinética , Contaminantes Químicos del Agua/análisis , Carbón Orgánico/química , Cromo/análisis , Adsorción , Fenómenos Magnéticos , Glutatión
15.
Transbound Emerg Dis ; 69(5): e3357-e3362, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35717589

RESUMEN

Hepatitis E virus (HEV), the causative agent of hepatitis E (HE), is classified into four major genotypes (1-4), with wild boar being the main natural reservoir for genotypes 3 and 4. However, little is known about the prevalence of HEV infection in wild boars in China. In this study, RT-nested PCR and RT-quantitative PCR were used to detect the HEV RNA in tissue samples taken from 331 free-ranging wild boars collected between 2018 and 2020 from 24 regions across China, and the partial ORF2 genes or complete genomes of the positive samples were sequenced. Furthermore, antibodies against HEV in 216 serum samples from wild boars were tested by ELISA. As a result, HEV RNA was detected in nine out of 331 liver samples of wild boars (2.72%), which were distributed in eight regions. Genetic and evolutionary analysis of partial ORF2 sequences indicated that the HEV strains identified in this study share 83.9%-100% nucleotide sequence identity and belong to subtypes 4d (n = 6), 4g (n = 2), and 4h (n = 1), and similar phylogeny was obtained using the complete genome sequences of seven wild boar HEV strains. Additionally, the HEV viral loads were higher in the liver than in other tissues and blood. Moreover, 61 out of 216 sera (28.2%) from wild boars tested positive for anti-HEV antibodies. To our knowledge, this is the first study to report the epidemiological situations of HEV infections in free-ranging wild boars in China, and the obtained data are valuable for prevention and control of HE.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Enfermedades de los Porcinos , Animales , China/epidemiología , Genotipo , Hepatitis E/epidemiología , Hepatitis E/veterinaria , Virus de la Hepatitis E/genética , Filogenia , ARN Viral/genética , Sus scrofa , Porcinos , Enfermedades de los Porcinos/epidemiología
16.
Environ Toxicol ; 37(8): 1891-1901, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35396826

RESUMEN

Methylmercury (MeHg) is an environmental neurotoxic substance, which can easily cross the blood-brain barrier, causing irreversible damage to the human central nervous system. Reactive oxygen species (ROS) are involved in various ways of intracellular physiological or pathological processes including neuronal apoptosis. This study attempted to explore the role of ROS-mediated poly ADP-ribose polymerase (PARP)/apoptosis-inducing factor (AIF) apoptosis signaling pathway in the process of MeHg-induced cell death of human neuroblastoma cells (SH-SY5Y). Here, we found that SH-SY5Y cells underwent apoptosis in response to MeHg, which was accompanied by the increased levels of ROS and calcium ion, and the activation of caspase cascades and PARP. Inhibiting the production of ROS can reduce the apoptosis rate to a certain extent. PARP/AIF apoptotic pathway is independent of caspase dependent signaling pathway and regulates it. In conclusion, these results suggest that ROS mediated activation of caspase pathway and PARP/AIF signaling pathway are involved in MeHg induced apoptosis, and these two pathways interact with each other.


Asunto(s)
Compuestos de Metilmercurio , Neuroblastoma , Adenosina Difosfato Ribosa/farmacología , Apoptosis , Factor Inductor de la Apoptosis/metabolismo , Factor Inductor de la Apoptosis/farmacología , Caspasas/metabolismo , Humanos , Compuestos de Metilmercurio/toxicidad , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Chemosphere ; 294: 133777, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35093416

RESUMEN

2,6-dichloro-1,4-benzoquinone (DCBQ), as an emerging water disinfection byproducts (DBPs), has posed potential risks via the digestion system. However, little is known about the toxicity of DCBQ on the gut microbiome, which plays a critical role on human health. This study has comprehensively investigated the impact of DCBQ on the intestinal microbiome, metabolic functions, and immunity after the mice orally exposure to DCBQ at the concentration of 31.25, 62.5 and 125 mg/kg body weight for 28 days. Our results indicated that DCBQ exposure has perturbed the balance between T helper (Th) 1 mediated pro-inflammatory response and Th2 mediated anti-inflammatory response in mice, especially inducing the activation of immune system toward a Th2 response. DCBQ group has induced gut microbiota dysbiosis, and at phylum level, Proteobacteria was relatively less abundant compared with that in the control group. Furthermore, DCBQ exposure has dramatically perturbed metabolites profiles which were involved in 28 metabolic pathways, such as amino acids biosynthesis and metabolism, lipid metabolism. In particular, the altered gut microbiota showed strong correlations with both the altered metabolites and the altered immunological variables after DCBQ exposure. This study provides evidence on the adverse effects and mechanisms of water disinfection byproduct DCBQ through the interaction of immune-microbiome-metabolome, highlighting the importance to assess DBPs-associated risks.


Asunto(s)
Agua Potable , Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Benzoquinonas/química , Desinfección/métodos , Agua Potable/química , Ratones , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos
18.
Nanotechnology ; 33(34)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34902851

RESUMEN

Chemisorbed oxygen acts a crucial role in the redox reaction of semiconductor gas sensors, and which is of great significance for improving gas sensing performance. In this study, an oxygen-plasma-assisted technology is presented to enhance the chemisorbed oxygen for improving the formaldehyde sensing performance of SnO2electropun fiber. An inductively coupled plasma device was used for oxygen plasma treatment of SnO2electrospun fibers. The surface of SnO2electrospun fibers was bombarded with high-energy oxygen plasma for facilitating the chemisorption of electronegative oxygen molecules on the SnO2(110) surface to obtain an oxygen-rich structure. Oxygen-plasma-assisted SnO2electrospun fibers exhibited excellent formaldehyde sensing performance. The formaldehyde adsorption mechanism of oxygen-rich SnO2was investigated using density functional theory. After oxygen plasma modification, the adsorption energy and the charge transfer number of formaldehyde to SnO2were increased significantly. And an unoccupied electronic state appeared in the SnO2band structure, which could enhance the formaldehyde adsorption ability of SnO2. The gas sensing test revealed that plasma-treated SnO2electrospun fibers exhibited excellent gas sensing properties to formaldehyde, low operating temperature, high response sensitivity, and considerable cross-selectivity. Thus, plasma modification is a simple and effective method to improve the gas sensing performance of sensors.

19.
J Colloid Interface Sci ; 608(Pt 3): 3204-3217, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34815079

RESUMEN

A novel perovskite CaLa4Ti4O15:Eu3+ red-emitting phosphor was synthesized via a sol-combustion method, and Gd3+ was further co-doped into structure to improve the luminescence performance. The effects of Eu3+ doping and Gd3+ co-doping concentrations on the microstructure and luminescence properties were investigated. The red emission peaks of as-prepared phosphors originate from the 5D0→7Fj electron transitions of Eu3+ ions. Under 273 nm excitation, the luminescence intensity of Eu3+ was significantly enhanced through the energy transfer between Gd3+ and Eu3+ in CaLa4Ti4O15, and the luminescence intensity was also improved even under the excitation of 394 nm. By combining red-emitting CaLa4Ti4O15:Eu3+, Gd3+ phosphor with commercial blue and green phosphors on n-UV chip (λ = 395 nm), an eye-friendly w-LEDs with appropriate correlated color temperature (4761 K) and high color rendering index (Ra = 93.1) has been realized. The electroluminescence spectrum of the packaged red LED have an excellent match with the PR absorption of plants. In addition, when introducing CaLa4Ti4O15:Eu3+, Gd3+ phosphor into a commercial w-LED with YAG:Ce3+, the adjustable chromaticity parameters like CCT and CRI values can be obtained. These results demonstrated that the as-prepared CaLa4Ti4O15:Eu3+, Gd3+ phosphor is an outstanding candidate as the red component for the application of w-LEDs and plants lighting.


Asunto(s)
Europio , Luminiscencia , Compuestos de Calcio , Iluminación , Óxidos , Fósforo , Titanio
20.
J Colloid Interface Sci ; 608(Pt 3): 2849-2859, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34802763

RESUMEN

Rational excogitation of microstructure and chemical constituents is a superior means of constructing electromagnetic wave (EMW) absorption materials with high performance. In this study, a kind of honeycomb-like NiFe2O4@Ni@C composite is prepared via an uncomplicated polymerization, pyrolysis and etching. Porous structure and internal cavity of NiFe2O4@Ni@C contribute to the numerous reflection and scattering of EMW. The strong ferromagnetic resonance of NiFe2O4 core and the multiple relaxation processes of porous carbon shell strongly promote the EMW loss. Additionally, the synergistic effect can improve impedance matching. The results demonstrate that the minimum reflection loss (RL) of honeycomb-like NiFe2O4@Ni@C composites is -65.33 dB at 13.63 GHz. The effective absorption bandwidth (EAB) is 3.68 GHz when the matching thickness is 4.95 mm. The mechanism of EMW dissipation of the honeycomb-like NiFe2O4@Ni@C composites is attributed to multiple reflections and scattering, conductive loss, interfacial polarization and ferromagnetism resonance. This work provides a tactic for the excogitation and synthesis of a low cost, light weight and efficient EMW absorber.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...